论文库首页  论文库
 
论文编号:
论文题目: Genomic and transcriptomic analysis of the endophytic fungus Pestalotiopsis fici reveals its lifestyle and high potential for synthesis of natural products
英文论文题目: Genomic and transcriptomic analysis of the endophytic fungus Pestalotiopsis fici reveals its lifestyle and high potential for synthesis of natural products
第一作者: Wang, XN; Zhang, XL; Liu, L; Xiang, MC; Wang, WZ; Sun, X; Che, YS; Guo, LD; Liu, G; Guo, LY; Wang, CS; Yin, WB; Stadler, M; Zhang, XY; Liu, XZ
英文第一作者: Wang, XN; Zhang, XL; Liu, L; Xiang, MC; Wang, WZ; Sun, X; Che, YS; Guo, LD; Liu, G; Guo, LY; Wang, CS; Yin, WB; Stadler, M; Zhang, XY; Liu, XZ
联系作者: Zhang, XY (reprint author), Chinese Acad Sci, Inst Microbiol, State Key Lab Mycol, Beijing, Peoples R China.
英文联系作者: Zhang, XY (reprint author), Chinese Acad Sci, Inst Microbiol, State Key Lab Mycol, Beijing, Peoples R China.
外单位作者单位:
英文外单位作者单位:
发表年度: 2015
卷: 16
期:
页码: -
摘要: Background: In recent years, the genus Pestalotiopsis is receiving increasing attention, not only because of its economic impact as a plant pathogen but also as a commonly isolated endophyte which is an important source of bioactive natural products. Pestalotiopsis fici Steyaert W106-1/CGMCC3.15140 as an endophyte of tea produces numerous novel secondary metabolites, including chloropupukeananin, a derivative of chlorinated pupukeanane that is first discovered in fungi. Some of them might be important as the drug leads for future pharmaceutics. Results: Here, we report the genome sequence of the endophytic fungus of tea Pestalotiopsis fici W106-1/CGMCC3.15140. The abundant carbohydrate-active enzymes especially significantly expanding pectinases allow the fungus to utilize the limited intercellular nutrients within the host plants, suggesting adaptation of the fungus to endophytic lifestyle. The P. fici genome encodes a rich set of secondary metabolite synthesis genes, including 27 polyketide synthases (PKSs), 12 non-ribosomal peptide synthases (NRPSs), five dimethylallyl tryptophan synthases, four putative PKS-like enzymes, 15 putative NRPS-like enzymes, 15 terpenoid synthases, seven terpenoid cyclases, seven fatty-acid synthases, and five hybrids of PKS-NRPS. The majority of these core enzymes distributed into 74 secondary metabolite clusters. The putative Diels-Alderase genes have undergone expansion. Conclusion: The significant expansion of pectinase encoding genes provides essential insight in the life strategy of endophytes, and richness of gene clusters for secondary metabolites reveals high potential of natural products of endophytic fungi.
英文摘要: Background: In recent years, the genus Pestalotiopsis is receiving increasing attention, not only because of its economic impact as a plant pathogen but also as a commonly isolated endophyte which is an important source of bioactive natural products. Pestalotiopsis fici Steyaert W106-1/CGMCC3.15140 as an endophyte of tea produces numerous novel secondary metabolites, including chloropupukeananin, a derivative of chlorinated pupukeanane that is first discovered in fungi. Some of them might be important as the drug leads for future pharmaceutics. Results: Here, we report the genome sequence of the endophytic fungus of tea Pestalotiopsis fici W106-1/CGMCC3.15140. The abundant carbohydrate-active enzymes especially significantly expanding pectinases allow the fungus to utilize the limited intercellular nutrients within the host plants, suggesting adaptation of the fungus to endophytic lifestyle. The P. fici genome encodes a rich set of secondary metabolite synthesis genes, including 27 polyketide synthases (PKSs), 12 non-ribosomal peptide synthases (NRPSs), five dimethylallyl tryptophan synthases, four putative PKS-like enzymes, 15 putative NRPS-like enzymes, 15 terpenoid synthases, seven terpenoid cyclases, seven fatty-acid synthases, and five hybrids of PKS-NRPS. The majority of these core enzymes distributed into 74 secondary metabolite clusters. The putative Diels-Alderase genes have undergone expansion. Conclusion: The significant expansion of pectinase encoding genes provides essential insight in the life strategy of endophytes, and richness of gene clusters for secondary metabolites reveals high potential of natural products of endophytic fungi.
刊物名称: BMC GENOMICS
英文刊物名称: BMC GENOMICS
论文全文:
英文论文全文:
全文链接:
其它备注:
英文其它备注:
学科: Biotechnology & Applied Microbiology; Genetics & Heredity
英文学科: Biotechnology & Applied Microbiology; Genetics & Heredity
影响因子: 3.986
第一作者所在部门:
英文第一作者所在部门:
论文出处:
英文论文出处:
论文类别: Article
英文论文类别: Article
参与作者:
英文参与作者:
 
2014 中国科学院上海生命科学研究院 版权所有