论文库首页  论文库
 
论文编号:
论文题目: Fine mapping of a large-effect QTL conferring Fusarium crown rot resistance on the long arm of chromosome 3B in hexaploid wheat
英文论文题目: Fine mapping of a large-effect QTL conferring Fusarium crown rot resistance on the long arm of chromosome 3B in hexaploid wheat
第一作者: Zheng, Z; Ma, J; Stiller, J; Zhao, Q; Feng, Q; Choulet, F; Feuillet, C; Zheng, YL; Wei, YM; Han, B; Yan, GJ; Manners, JM; Liu, CJ
英文第一作者: Zheng, Z; Ma, J; Stiller, J; Zhao, Q; Feng, Q; Choulet, F; Feuillet, C; Zheng, YL; Wei, YM; Han, B; Yan, GJ; Manners, JM; Liu, CJ
联系作者: Liu, CJ (reprint author), CSIRO Agr, 306 Carmody Rd, St Lucia, Qld 4067, Australia.
英文联系作者: Liu, CJ (reprint author), CSIRO Agr, 306 Carmody Rd, St Lucia, Qld 4067, Australia.
外单位作者单位:
英文外单位作者单位:
发表年度: 2015
卷: 16
期:
页码: -
摘要: Background: Fusarium crown rot (FCR) is a major cereal disease in semi-arid areas worldwide. Of the various QTL reported, the one on chromosome arm 3BL (Qcrs.cpi-3B) has the largest effect that can be consistently detected in different genetic backgrounds. Nine sets of near isogenic lines (NILs) for this locus were made available in a previous study. To identify markers that could be reliably used in tagging the Qcrs.cpi-3B locus, a NIL-derived population consisting of 774 F-10 lines were generated and exploited to assess markers selected from the existing linkage map and generated from sequences of the 3B pseudomolecule. Results: This is the first report on fine mapping a QTL conferring FCR resistance in wheat. By three rounds of linkage mapping using the NILs and the NIL-derived population, the Qcrs.cpi-3B locus was mapped to an interval of 0.7 cM covering a physical distance of about 1.5 Mb. Seven markers co-segregating with the locus were developed. This interval contains a total of 63 gene-coding sequences based on the 3B pseudomolecule, and six of them were known to encode disease resistance proteins. Several of the genes in this interval were among those responsive to FCR infection detected in an earlier study. Conclusions: The accurate localization of the Qcrs.cpi-3B locus and the development of the markers co-segregating with it should facilitate the incorporation of this large-effect QTL conferring FCR resistance into breeding programs as well as the cloning of the gene(s) underlying the QTL.
英文摘要: Background: Fusarium crown rot (FCR) is a major cereal disease in semi-arid areas worldwide. Of the various QTL reported, the one on chromosome arm 3BL (Qcrs.cpi-3B) has the largest effect that can be consistently detected in different genetic backgrounds. Nine sets of near isogenic lines (NILs) for this locus were made available in a previous study. To identify markers that could be reliably used in tagging the Qcrs.cpi-3B locus, a NIL-derived population consisting of 774 F-10 lines were generated and exploited to assess markers selected from the existing linkage map and generated from sequences of the 3B pseudomolecule. Results: This is the first report on fine mapping a QTL conferring FCR resistance in wheat. By three rounds of linkage mapping using the NILs and the NIL-derived population, the Qcrs.cpi-3B locus was mapped to an interval of 0.7 cM covering a physical distance of about 1.5 Mb. Seven markers co-segregating with the locus were developed. This interval contains a total of 63 gene-coding sequences based on the 3B pseudomolecule, and six of them were known to encode disease resistance proteins. Several of the genes in this interval were among those responsive to FCR infection detected in an earlier study. Conclusions: The accurate localization of the Qcrs.cpi-3B locus and the development of the markers co-segregating with it should facilitate the incorporation of this large-effect QTL conferring FCR resistance into breeding programs as well as the cloning of the gene(s) underlying the QTL.
刊物名称: BMC GENOMICS
英文刊物名称: BMC GENOMICS
论文全文:
英文论文全文:
全文链接:
其它备注:
英文其它备注:
学科: Biotechnology & Applied Microbiology; Genetics & Heredity
英文学科: Biotechnology & Applied Microbiology; Genetics & Heredity
影响因子: 3.986
第一作者所在部门:
英文第一作者所在部门:
论文出处:
英文论文出处:
论文类别: Article
英文论文类别: Article
参与作者:
英文参与作者:
 
2014 中国科学院上海生命科学研究院 版权所有